Instructor: Beth Lloyd, Ph.D.
Office: School of Education, Health, and Human Performance, Room 227
Office Phone: 953-7432
Email: LloydB@cofc.edu
Office Hours: MW: 9:15-11:15 am; by appointment; or phone T: 2-3 (call: 843.873.8090)
Email Hours: Tues: Latest check and response 4 pm

Course Description:
This course focuses on the knowledge, dispositions, and performances necessary for quality early childhood mathematics education. Emphasis is on developmentally appropriate instructional strategies linked to the Grades PreK-3 content and process standards. Active learning, lesson planning, ongoing and worthwhile assessment, and informed teacher decision-making are major components.

Required Text:

Recommended Text:
- Used copies available online for about $3.00 (good resource, but not drawn on in class)

- Available online at www.nctm.org

Class Supplies:
South Carolina Mathematics Standards K-3 (online: http://ed.sc.gov/agency/se/Teacher-Effectiveness/Standards-and-Curriculum/Mathematics.cfm)

Common Core Standards for mathematics K-3 (online http://www.corestandards.org/Math)

NCTM Standards (both process and content) for K-3 (online http://nctm.org/standards)

SC site aligning SC Standards with Common Core Standards (online http://ed.sc.gov/agency/se/Teacher-Effectiveness/Standards-and-Curriculum/ELAandMathematicsCrosswalks.cfm)

Smarter Balanced Assessment Consortium (online http://www.smarterbalanced.org/)

Course Requirements:
Demonstration of SOE Dispositions
Examples of how dispositions are evident are provided in italics.
- Belief that all students can learn, participation and attitudes expressed about students and learning
- Value and respect for individual differences, interactions in class discussions and participation in group work
- Value of positive human interactions, participation in class and in group work
- Exhibition and encouragement of intellectual curiosity, enthusiasm about learning, and willingness to learn new ideas, participation in class and group discussions and performance on assessments
- Dedication to inquiry, reflection, and self-assessment, participation in class and group discussions; performance on assessments (especially the reading and course reflections assignments)
- Value of collaborative and cooperative work, thoughtful, constructive critiques of others’ work, participation in class activities
Sensitivity toward community and cultural contexts, participation in class and group discussions, tolerating, discussing, and respectfully listening to differing points of views

Engagement in responsible and ethical practice, performance on assessments, class attendance, and participation in group activities

Development of professional mastery over time, performance over time in writing, thinking, and expression of knowledge

Utilization of Computer Applications (Available in the CofC managed computer labs located in JC Long, Library, and other campus sites. If unfamiliar with these applications, set up a time for tutoring with me.)

- Internet
- Word processing
- OAKS

Completion of all assigned readings and assignments ON TIME.

See Course Assignments below for detailed descriptions.

Responsibility for ALL course content
Including lecture, text, outside reading, handouts, research, etc.

Responsibility for keeping up with grades and attendance
If you miss a class, ask a classmate for the missed assignments and notes.

Course Assignments:
Due dates for course assignments, as well as scheduled exams, are listed on the tentative daily schedule at the end of the syllabus. Any changes will be announced in class or posted on OAKs. All assignments must be turned in during the class on the date due. If, for medical or serious personal reasons, an assignment is late, the instructor should be informed of the reasons. Otherwise, each late course assignment will receive a FIVE-PERCENT deduction per day that it is late. DO NOT give assignments to School of Education personnel. Assignments will NOT be accepted via email (unless specified explicitly).

All assignments must be typed and follow APA style guidelines, unless otherwise specified.

WWW Lesson Plan
TCs will choose an online resource (i.e. Illuminations interactive tool, NASA data, Weather data, etc.) that has value for teaching mathematics. TCs will have 3-5 minutes to show the resource using the classroom computer. The purpose of this project is to integrate technology (in this case the online resources) into the development of worthwhile tasks for teaching mathematics.

Specifically, TCs are to construct one lesson based on one online resource. The resource sites can be sites with data and/or other information that are useful for developing a lesson, or they can be sites that contain actual interactive activities. Focus on creating a innovative activity within the lesson ask yourself is this Problem-based? Student centered? etc. Specifically, not traditional direct instruction; not drill and practice; create a valuable activity to truly enhance learning – not just some activity to show use of technology for technology sake. Given that TCs will be assessed on the quality of their lessons rather than where they came from, TCs likely will need to adapt what is found to make sure the quality of the tasks meet the criteria of the provided lesson plan. TCs’ lessons should reflect the characteristics of effective lessons outlined in class. TCs must choose a grade level from PK-3 and can assume that students have access to the web either in the school library or their classroom.

The assignment will have 3 major components: the creation of a lesson, providing feedback to others, and the revision of his/her own lesson based on peer feedback. See the grading criteria below for specifics.

Post draft to a class discussion board.
Read and give feedback on 3 drafts; if there are already 3 feedback posts, TCs must do someone else. To ensure TCs spot as a reviewer for a particular lesson, TCs should commit with a temporary post that is to be replaced by the actual review.

Feedback elements include:
• What you like and why?
• What you don’t like and why?
• Are all of the components present?
• Is there sufficient information in the write-up for you to use it “as is” to teach a lesson? If not, what is missing?
• Are the Standards aligned with both the objectives and the assessment?

For final project to be submitted, TCs are to create a bulleted summary of the feedback received, commenting on how it was addressed within the revised lesson plan. This should be between one and two pages, typed, and double spaced.

Draft due to discussion board: WEEK 4
Peer feedback: WEEK 5
Final project and brief presentation: WEEK 6

Grading criteria on OAKS

Curriculum Analysis Final Project
In groups of no more than four, TCs will be assigned units from a mathematics curriculum to analyze and revise to address a certain content area within the CC standards. As a group, they will (1) write a short narrative addressing the questions below; (2) establish a revised scope and sequence for the lessons in the unit(s), indicating specifically what standards will be fully addressed by each lesson (revised or not); (3) determine which individuals will revise which lessons; and (a) present to the class the big topics that arose from the analysis (what was good and remained the same, what needed to be changed, what standards were aligned with unit, revised scope and sequence, etc.) and (b) demonstrate ONE of the unit lessons.

At a minimum, each individual is required to revise one of the unit lessons by utilizing what was discussed in class about high-quality mathematics instruction (addressing all learners; utilizing innovative techniques that encourage problem solving, communication, connections, multiple representations, and reasoning; integrating technology, literacy, and other content areas; etc.). TCs are free to use resources discussed in class (NCTM journal articles, illuminations, the text, etc.) and/or seek help from expert teachers, making sure to cite accordingly. It is likely that more than four lessons will need to be revised; it is up to the group to determine how to distribute the remainder of the lesson revisions – as a group, individually, etc. TCs have a great deal of freedom in this project. They can choose to delete entire lessons from the scope and sequence and/or integrate completely new lessons, but they must address each component of the assigned standards for depth of understanding.

Questions to address in completing the narrative related to: Nature of classroom tasks, Social culture of the classroom, and Equity and accessibility
Do the tasks require students to think as opposed to simply practice?
Do the tasks encourage reflection, communication, and/or cooperative learning?
Are the tasks engaging and interesting enough that students want to pursue them? Specifically, are the tasks intrinsically motivating?
Do the tasks lend themselves well to the use of appropriate tools?
How well do the tasks take into account related tasks from previous experiences, both in and out of school?
Is the required thinking mathematical as opposed to simply rote learning?
If already aligned or if an alignment for the text is accessible from another resource, are the South Carolina and Common Core mathematics standards ACCURATELY aligned?
To what extent does the text provide enough options to make it likely that all children will be successful? (How are students including special education, Gifted and Talented, English Language Learners, and students with special needs addressed?)
Are the suggested accommodations appropriate for all students?
What is done to help the teacher make sure every student contributes?

Write Up Due and Presentation: EXAM DAY
Grading criteria on OAKS

Quizzes
TCs will be expected to complete three in-class quizzes. Material on these assessments comes from (1) in-class warm-ups, lectures, discussions, and activities; (2) out-of-class readings and assignments; and (3) NCTM, SC, and Common Core Standards. (Quiz dates are indicated on the schedule.)

Reading Reflections & Writing To Learn (WTL) Questions
To maximize the development of how to teach mathematics, it is imperative that TCs engage in their readings. Some of the readings will be addressed in class, but due to the vast body of pertinent literature in this field, some of the topics covered in the out-of-class readings will not. Therefore, to ensure active engagement with the readings and maximum knowledge gained from this course, TCs will be responsible for reflecting on readings throughout the semester.

TCs are to respond to two to four assigned WTL questions per chapter, no more than a page typed in length each – parts that are difficult to type can be handwritten. Too, TCs are to write a short paragraph per chapter reflecting on each chapter’s content which might include points of confusion, descriptions of “AHA!” moments, and topics that are of particular interest or concern to TCs (elaborating on why of interest or concern). DO NOT SUMMARIZE; REFLECTION.

At the beginning of the class indicated on the daily schedule, TCs will discuss the questions and reflections with their peers and add insightful comments to their typed work as they see fit. TCs will submit their responses and reflections. One WTL question per chapter will be graded for accuracy; the others along with the reflections will be graded for completion. Feedback will be provided either on individual papers or to the class as a whole.

If late to class or not in class the day these are due, TCs will not receive credit for the assignment.

Teaching Children Mathematics (TCM): Shared Lessons
Teaching Children Mathematics (TCM) is an official journal of the National Council of Teachers of Mathematics (NCTM) and a forum for the exchange of ideas in curriculum, instruction, learning, and teacher education. The primary audience of TCM is elementary-school teachers. The journal contains many articles with ideas that are directly applicable to the classroom. Journals are available for review online ONLY for NCTM members (this does NOT include the 100-day free trial membership). TCs may join NCTM online at http://www.nctm.org/membership/content.aspx?id=7618. If TCs decide not to join NCTM, they must access the journals (past 1994) by going to the library. The objective in having TCs look at the journals is to help them gain familiarity with them as resources for teaching mathematics.

TCs are to find an activity in TCM that fits their assigned content area and grade level. Upon choosing their article and activity, TCs should let me know – on the article sign-up sheet. There are to be no duplicates in activities. I will carry the article sign up with me each class for TCs to review if needed.

TCs are to write a complete lesson plan using this activity. The lesson plan should follow the EHHP lesson plan format provided on OAKS. They should also write a brief explanation of why they chose this article and its activity to share with their classmates (see grading criteria for specifics). TCs will provide a hard copy of the lesson to me one week prior to presenting it to the class. TCs should plan to stay after class that day to get my feedback on the lesson. TCs will not be permitted to teach the lesson to the class unless approved a week ahead of time.

Each TC will have time set aside in class to review how the lesson should be implemented to a classroom of students. This means that TCs should have all of the materials ready to demonstrate the lesson to their classmates. They will have fifteen minutes per group (three groups total – PK-1, 1-2, and 3) to go over the lesson implementation. Peers are expected to provide “the teacher” with constructive feedback. TCs will utilize this feedback to update the lesson. The final lesson, along with a reflection, is to be submitted one week following the lesson demonstration.

These lessons are categorized by the FIVE NCTM content standards. Presentations will be in center format. That is, there will be three centers – PK-1st, 1st – 2nd, and 3rd. Each center will have 15 minutes to teach a small group. Small groups will rotate through all three centers. Presenters must keep in mind the time limit, along with what materials they need to teach to all three groups. The rationale for sharing lessons in this center format is to allow each TC multiple times to teach the same activity, ideally improving with each iteration.
Hard Copy Draft: Due A WEEK BEFORE PRESENTING IN CLASS to get my approval
Presentation: Due date indicated on daily schedule
Final Draft and Reflection: Due a week following the presentation
Lesson Plan Template on OAKS

SUGGESTION: I have set up the course assignments so that TCs are to share lessons with one another. They should begin building a toolbox of lessons/activities based on what is shared in this class. I recommend that throughout the semester, TCs compile the lessons gained from their classmates into a portfolio organized either by grade level or content standard. TCs are reminded to post and look on the PBWorks I created for this academic year for activities.

Participation and Attendance
There will be a number of warm ups, discussions, activities, and homeworks TCs will be expected to participate in and/or complete. For completed assignments indicated with an asterisk on the tentative daily schedule, a point will be earned (15 points).

Participation points will be deducted for cell phone use in class and disrespectful conduct. If an emergency, TAs may be excused to the hallway to talk or text. Otherwise, I should not see fingers typing on phones underneath tables.

TEDU Attendance Policy
Excessive absences (i.e., more than 15% - approximately 5 hours/2 classes) may result in receiving a “WA/F.” Students will be tardy if they arrive in class within the first 20 minutes after class has started. Three tardies result in one absence. Students will be absent if they arrive after 20 minutes or if they leave class early. Regarding being tardy or having to leave class early, exceptions will be made on an individual basis, but students must speak with me about extenuating circumstances for such exceptions. Regarding absences, if a student exceeds allowable absences due to extenuating circumstances beyond the student’s control, a panel of professors from that semester will review the circumstances and make a final decision.

If a student exceeds allowable absences due to extenuating circumstances beyond the student’s control, a panel of professors from that semester will review the circumstances and make a final decision. SNAP students, if they wish special accommodations, must see the professor within the first two weeks of the course or as soon as they find out about potential accommodations if determined mid semester. Athletes who will miss class due to athletic events must see the professor within the first two weeks of the course and submit athletic schedule for the semester, identifying classes that will be missed. No other absences will be allowed for athletes who miss the maximum allowable absences due to athletic events.

Written and Oral Communication
TCs are expected to use correct grammar at all times. Points will be deducted on written assignments for grammatical errors. All references must follow the American Psychological Association (APA) Guidelines for Term Papers. Writing Lab is located on the first floor of Addlestone Library (Monday through Thursday 9:00 am to 9:00 pm and Friday 9:00 am to noon). Further, it is imperative that TCs use correct grammar in all oral communication, especially during field experiences. Classroom teachers, student peers, and I will collaborate to eliminate all oral grammatical errors, using an approach of constructive criticism.

Evaluation
It will be possible to earn 150 points during the semester. They will be distributed as follows:

<table>
<thead>
<tr>
<th>Category</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participation</td>
<td>15</td>
</tr>
<tr>
<td>WWW Lesson Plan</td>
<td>30</td>
</tr>
<tr>
<td>Shared TCM Lesson</td>
<td>25</td>
</tr>
<tr>
<td>Quizzes (3)</td>
<td>35</td>
</tr>
<tr>
<td>Reading Reflections/WTL Questions</td>
<td>15</td>
</tr>
<tr>
<td>Curriculum Analysis Final Project</td>
<td>30</td>
</tr>
</tbody>
</table>

Evaluation Scale

<table>
<thead>
<tr>
<th>Letter Grades</th>
<th>Percentage Range</th>
<th>Grade Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5
Respectful Conduct
TCs are expected to be respectful and considerate of one another. Cell phones should be turned off while in class. Laptops should only be used in class if they are facilitating the development of mathematical thinking; if they appear to be a distraction, I will ask that they be put away. Disrespectful conduct will result in a loss of participation points.

CofC Honor System
Lying, cheating, attempted cheating, and plagiarism are violations of our Honor Code that, when identified, are investigated. Each incident will be examined to determine the degree of deception involved. Incidents where the instructor determines the student’s actions are related more to a misunderstanding will handled by the instructor. A written intervention designed to help prevent the student from repeating the error will be given to the student. The intervention, submitted by form and signed both by the instructor and the student, will be forwarded to the Dean of Students and placed in the student’s file.

Cases of suspected academic dishonesty will be reported directly by the instructor and/or others having knowledge of the incident to the Dean of Students. A student found responsible by the Honor Board for academic dishonesty will receive a XF in the course, indicating failure of the course due to academic dishonesty. This grade will appear on the student’s transcript for two years after which the student may petition for the X to be expunged. The student may also be placed on disciplinary probation, suspended (temporary removal) or expelled (permanent removal) from the College by the Honor Board.

Students should be aware that unauthorized collaboration--working together without permission--is a form of cheating. Unless the instructor specifies that students can work together on an assignment, quiz and/or test, no collaboration during the completion of the assignment is permitted. Other forms of cheating include possessing or using an unauthorized study aid (which could include accessing information via a cell phone or computer), copying from others’ exams, fabricating data, and giving unauthorized assistance. Research conducted and/or papers written for other classes cannot be used in whole or in part for any assignment in this class without obtaining prior permission from the instructor.

Students can find the complete Honor Code and all related processes in the Student Handbook at http://studentaffairs.cofc.edu/honor-system/studenthandbook/index.php

ADA Accommodations
In compliance with the Americans Disabilities Act (ADA), all qualified students are entitled to “reasonable accommodations.” Any students requiring accommodations should contact the Center for Disability Services (953-1431) and provide me with documentation of needed accommodations within the first two weeks of the course or as soon as they find out about potential accommodations if determined mid semester.

Course Objectives and Standards
All teacher preparation programs in the College of Charleston’s School of Education (SOE) are guided by a commitment to the conceptual framework of “Making the Teaching and Learning Connection.” Three elements of teacher competency (ETC) are fundamental to this framework; teachers must (1) understand and value the learner, (2) know what and how to teach and assess within a conducive learning environment, and (3) understand themselves as
professionals. In addition, these competencies are foundational to the learning and assessments within this course, facilitating the development of knowledge, skills, and dispositions necessary for becoming an effective teacher.

Below are the specific end-of-course outcomes related to these teacher competencies. They are derived from the standards set forth by the National Council of Measurement in Education (NCME) and relate to those of the (1) School of Education (SOE), (2) National Council for Accreditation of Teacher Education (NCATE), (3) National Association for the Education of Young Children (NAEYC), and State Standards for Teacher Education (SC). They, therefore, indicate the expectations for teacher candidates within the School of Education, early childhood teachers and elementary-grades teachers.

1. Teacher candidates (TCs) will develop the understanding of how students learn to construct mathematical ideas from the concrete early childhood experiences through the development of thinking abilities in early elementary grades. SOE I; NCATE 1; NAEYC 4b

2. TCs will articulate a vision of school mathematics that supports access of all students to a curriculum that emphasizes important mathematical concepts; effective and engaging research-based instructional practices; and high expectations with appropriate accompanying accommodations. SOE II, III; NCATE 2d, 3d; NAEYC 4b, 5

3. TCs will convey an appreciation for the discipline of mathematics including its history and the contributions of diverse cultures to the field. SOE II, VII; NCATE 2d; SC 4 (contextual teaching and diverse learning styles)

4. TCs will articulate the knowledge that mathematics curriculum must be coherent and focused on important useful concepts that are connected within the discipline and across disciplines. SOE II; NCATE 2d, 2i, 3a; NAEYC 5; NMSA 4.K2, SC 4 (contextual teaching)

5. TCs will recognize the importance of the role of student ideas, interests, and needs in the design, implementation, and evaluation of mathematically-based learning experiences. SOE I; NCATE 2d, 3a, 3d; NAEYC 1a, 5; NMSA 3.K5, 3.D4, 4.P3; SC 4 (diverse learning styles; cooperative teaching)

6. TCs will demonstrate an understanding of the need for a variety of instructional strategies to effectively address developmental, ability and learning style needs of PK-8 students exhibiting diversity in its many forms. SOE III; NCATE 4; NAEYC 1, 4b; NMSA 1.P5, 1.P10, 4.K3, 5.K2; SC 4 (diverse learning styles)

7. TCs will develop the knowledge of, and dispositions that value, ongoing, systematic, formal, and informal assessment as an integral part of instruction that guides and enhances learning. SOE VI; NCATE 4; NAEYC 3, 4b; NMSA 1.P6, 5.K8, 5.D5, 5.P4, 6(all)

8. TCs will communicate about and through mathematics verbally and in writing using both everyday language and mathematical representations. SOE II; NCATE 2d, 3e; NAEYC 4b; NMSA 4.K4, 4.D4, 4.P5

9. TCs will demonstrate knowledge of the organization of the content standard areas of number and operations, algebra, geometry, measurement, data analysis and probability within the PK-8 mathematics curriculum as prescribed by the NCTM and the SC Standards. SOE II; NCATE 2d; NAEYC 4b, 5; NMSA 4, 6.K5; SC 7

10. TCs will demonstrate the value and integrative nature of the process standards of problem solving, reasoning, communication, connections, and representations within the PK-8 mathematics curriculum as prescribed by the NCTM and the SC Standards. SOE II; NCATE 2d, 3c; NAEYC 4b, 5, 4c; NMSA 4, 5.K3, 5.P2, 6.K5; SC 4 (contextual teaching); SC 7

11. TCs will demonstrate competency in, and an understanding of the value of, a breadth and depth of mathematical knowledge and skills that extend beyond the level for which the TC is preparing. SOE II; NCATE 2d

12. TCs will state characteristics of a positive classroom environment conducive to the promotion of student confidence in their abilities to understand and use mathematics. SOE I & III; ETC 1; NAEYC 1c, 5; SC 6

13. TCs will formulate appropriate objectives and student participation activities for math lessons. SOE III; ETC 2, 3;
14. TCs will demonstrate the ability to (1) relate mathematical concepts through the use of manipulatives and (2) incorporate appropriate technology into classroom instruction. SOE II & III; ETC 2; NAEYC 4b, 5; SC 16

15. TCs will develop awareness and be able to communicate how mathematics relates to various career options with the goal of emphasizing to students the usefulness of mathematical content. SOE V; ETC 2; SC 4

TEACHER EDUCATION PROGRAMS: COMMON CORE ELA AND MATHEMATICS STANDARDS

Mathematics Practice Standards

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

ELA Standards

Reading

KEY IDEAS AND DETAILS

1. Read closely to determine what the text says explicitly and to make logical inferences from it; cite specific textual evidence when writing or speaking to support conclusions drawn from the text.
2. Determine central ideas or themes of a text and analyze their development; summarize the key supporting details and ideas.

CRAFT AND STRUCTURE

4. Interpret words and phrases as they are used in a text, including determining technical, connotative, and figurative meanings, and analyze how specific word choices shape meaning or tone.

INTEGRATION OF KNOWLEDGE AND IDEAS

7. Integrate and evaluate content presented in diverse media and formats, including visually and quantitatively, as well as in words.
8. Delineate and evaluate the argument and specific claims in a text, including the validity of the reasoning as well as the relevance and sufficiency of the evidence.

RANGE OF READING LEVEL AND TEXT COMPLEXITY

10. Read and comprehend complex literary and informational texts independently and proficiently.

Writing

TEXT TYPES AND PURPOSES

1. Write arguments to support claims in an analysis of substantive topics or texts using valid reasoning and relevant and sufficient evidence.

PRODUCTION AND DISTRIBUTION OF WRITING

4. Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
5. Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach.
6. Use technology, including the Internet, to produce and publish writing and to interact and collaborate with others.

RANGE OF WRITING

10. Write routinely over extended time frames (time for research, reflection, and revision) and shorter time frames (a single sitting or a day or two) for a range of tasks, purposes, and audiences.

Speaking and Listening
COMPREHENSION AND COLLABORATION
1. Prepare for and participate effectively in a range of conversations and collaborations with diverse partners, building on others’ ideas and expressing their own clearly and persuasively.
2. Integrate and evaluate information presented in diverse media and formats, including visually, quantitatively, and orally.
3. Evaluate a speaker’s point of view, reasoning, and use of evidence and rhetoric.

PRESENTATION OF KNOWLEDGE AND IDEAS
4. Present information, findings, and supporting evidence such that listeners can follow the line of reasoning and the organization, development, and style are appropriate to task, purpose, and audience.
5. Make strategic use of digital media and visual displays of data to express information and enhance understanding of presentations.

Language
CONVENTIONS OF STANDARD ENGLISH
1. Demonstrate command of the conventions of standard English grammar and usage when writing or speaking.
2. Demonstrate command of the conventions of standard English capitalization, punctuation, and spelling when writing.

TEACHER EDUCATION PROGRAMS: FINAL DRAFT OF EEDA PERFORMANCE STANDARDS

1. DEFINITION: Career Guidance is a process by which students become aware of the world of work, explore career options, and prepare for post-secondary opportunities. **Performance Standard:** Teacher candidates will explain the career guidance process.

2. DEFINITION: The curriculum framework for career clusters of study is an organizational model that integrates career preparation components with academic coursework, providing the foundation for the development of the Individual Graduation Plan (IGP). The IGP, organized around career clusters and majors, is an educational plan aligned with students’ interests, aspirations, and experiences. **Performance Standard:** Teacher candidates will explain the curriculum framework for the career clusters of study concept and its relevance to the Individual Graduation Plan (IGP).

3. DEFINITION: The elements of the Career Guidance Model are awareness, exploration, and preparation. **Performance Standard:** At the age-appropriate level of instruction, teacher candidates will explain the use of the career guidance standards and competencies as specified in the South Carolina Comprehensive Developmental Guidance and Counseling Program Model.

4. DEFINITION: Character education encompasses the identification, understanding, and performance of core values (listed in §59-17-135) that enhance citizenship, relationships, and quality of life. **Performance Standard:** Teacher candidates will identify instructional strategies that promote core values, as specified in §59-17-135, in the school community.

5. DEFINITION: Contextual teaching is a concept that refers to methodologies used by teachers that focus on concrete, hands-on instruction and content presentation with an emphasis on real-world application and problem solving. **Performance Standard:** Teacher candidates will use concrete, hands-on instruction and content presentation with an emphasis on real-world application and problem solving.

6. DEFINITION: Cooperative learning is an instructional technique where students interact collaboratively to complete a task. **Performance Standard:** Teacher candidates will implement learning strategies that promote cooperation.

7. DEFINITION: Learning styles is a concept that refers to methodologies intended to accommodate diversity in student learning. **Performance Standard:** Teacher candidates will implement strategies to accommodate the needs of diverse learners.
<table>
<thead>
<tr>
<th>WEEK</th>
<th>Topic</th>
<th>Readings & Assignments to be completed for the given class</th>
</tr>
</thead>
</table>
| 1 | 8/23 | Warm Up: “Girls may learn math anxiety” & Math Problems/Exercises
| | | Course overview
| | | Introduction to PK-3 mathematics
| | | Standards and standards-based teaching (Ch. 1)
| | | Doing mathematics (Ch. 2)
| | | What does it mean to be mathematically proficient?
| | | Spiral activity – glue, scissors, construction paper*
| | | Explanation of TCM shared lesson plan
| | | Explanation of Cultural Artifact HW
| | | Read Chs. 1 & 2 |
| 2 | 8/30 | Reading Reflection/Writing to Learn (RR/WTL) #1
| | | Warm Up: Math Problems/Exercises & sharing CA*
| | | Problem solving and problem-based classroom (Ch. 3 & Ch. 4)
| | | Snowman Activity
| | | Lesson planning (Ch. 4): Assign lesson sections to each group
| | | Explanation of Aims HW
| | | Read Chs. 3 & 4 (RR/WTL #1 – 2 pts)
| | | Cultural Artifact HW |
| 3 | 9/6 | Meet in library (Room TBA)
| | | Warm up: Sharing Aims activities*
| | | Writing workshop: Understanding the components of a generic lesson plan
| | | Explanation of WWW Lesson Plan (15 min)
| | | Aims problem solving activity
| | | Reread and take notes* on all material related to assigned lesson-plan component, may also want to skim Chs. 5 & 6 if related to your section
| | | Read assigned articles posted to OAKS related to “addressing individual needs”
| | | Read Chs. 6 & 7 (RR/WTL #2 – 2 pts)
| | | WWW drafts due to discussion board by 5 PM today |
| 4 | 9/13 | RR/WTL #2 (15 min)
| | | Equity and accessibility (Ch. 6)
| | | Cultural/historical integration*: Using history and culture to make learning relevant/relates to issues of equity and accessibility (Algebra Project, Pat Toliver’s Math Trails)
| | | Technology integration (Ch. 7) – Dr. Davis Demo.
| | | If time: Learning styles video
| | | Read Chs. 6 & 7 (RR/WTL #2 – 2 pts)
| | | WWW Final Project
| | | Read Chs. 8 & 9 (RR/WTL #3 – 2 pts) |
| 5 | 9/20 | Quiz #1 (30 minutes)
| | | Warm Up: Ch 5 WTL ?s* & Math Problems and Exercises (25 min)
| | | Timed-Test Activity
| | | Assessment (Ch. 5): timed tests, rubrics, analyzing student errors, Smarter Balanced Assessment Consortium
| | | EEDA Activity
| | | Study for Quiz #1
| | | WWW peer feedback to 3 other plans due by 5 PM today to discussion board
| | | Read Ch. 5 (Complete assigned WTL questions)
| | | Suggestion: Review TCM to find Shared LP Activity
| | | Read Chs. 10 & 11 (RR/WTL #4 – 2 pts)
| | | N & O Shared TCM Lessons |
| 6 | 9/27 | RR/WTL #3 (15 min)
| | | Whole Numbers, Number Sense, & Operations with Whole Numbers* (Chs. 8 & 9) (75 min)
| | | Present WWW project main ideas (45 minutes)
| | | Closure: Math Problems/Exercises (10 min)
| | | WWW Final Project
| | | Read Chs. 8 & 9 (RR/WTL #3 – 2 pts) |
| 7 | 10/4 | RR/WTL #4 (15 min)
| | | Mastering Basic Facts & Place Value Focus Questions* (Chs. 10 & 11) – (60 min)
| | | Number & Operations Lesson Rotation (15 min each)
<p>| | | Show students their content area for JIGSAW (5 |</p>
<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Activity</th>
<th>Notes</th>
</tr>
</thead>
</table>
| 10/11 | 8 | Strategies for Whole Number Operations & Computational Estimation (Chs. 12 & 13, *Everyday mathematics* article) JIGSAW Activity: Part I* (45 min) | Skim all of Chs. 12 & 13
Skim *Everyday mathematics* article
Read CAREFULLY & take notes on readings for Jigsaw Part I |
| | 10/18| Warm up: Group discussion of case focus questions and RR/WTL 5 (25 min)
Algebraic Thinking (Ch. 14)
Algebra Lesson Rotation (15 min each) | Read Ch. 14 (RR/WTL #5 – 2 pts)
Read Cases 1 and 3 in “Using patterns to determine what’s ahead”
Answer case focus questions and include as part of RR/WTL #5
Algebra Shared TCM Lessons |
| 10/25 | 10 | Quiz #2 (30 min)
Blurring the ELA-Mathematics Divide: Oral and Written Communication via Problem-Based Curricula Mentoring Young Mathematicians: Designing a shape gallery*
Links to literature
Explanation of literature connection HW | Study for Quiz #2
Readings assigned related to M squared |
| 11/1 | 11 | Share literature connection ideas* (30 min)
Warm Up: What is a trianquad? (15 min)
Geometry & Measurement Centers (Chs. 19 & 20) (75 min)
Sign Up and Explanation of Curriculum Analysis Final Project (30 min) | Read Ch. 19
Literature connection HW |
| 11/8 | 12 | RR/WTL #6 (15 min)
Warm Up: Geo & Meas Preassessments (20 min)
Geo & Measurement Centers debrief (20 min)*
Trapezoids and translations activity (20 min)
Geo/Measurement Lesson Rotation (15 min each)
Remainder of class: Work on CA project | Read Ch. 20
RR/WTL #6 (Chs. 19 & 20 – 2 pts)
Geometry/Measurement Shared TCM Lessons |
| 11/15 | 13 | RR/WTL #7 (15 min)
Warm Up: Group Discussion of Praxis Example* (20 min) & Math Problems/Exercises (15 min)
Early Fraction Concepts | Read Ch. 15 (RR/WTL #7 – 1 pt)
Skim Ch. 16
Attempt Praxis example |
| 11/22 | 14 | RR/WTL #8 (15 min)
Warm up: discuss case questions (20 min)
DA and Probability Preassessments (20 min)
Data Analysis & Probability (Ch. 21) (35 min)
DA & Prob Lesson Rotation (15 min each)
Student evaluations (15 min) | Read Ch. 21 (RR/WTL #8 – 2 pts)
Read Cases 7-9 in “Categorical data: Representing and describing the results”
Answer case questions and include as part of RR/WTL #8
Data analysis Shared TCM Lessons |
| EXAM DAY | 15 | Quiz #3 (30 min)
Curriculum Assignment Presentation & Lesson Demonstration (whole class) | Study for Quiz #3
Break 10 min after quiz
Presentation/Demos: 25 min each group |

*Each of these items is worth 1 participation point.
Name: __________________________________
LLOYD_EDEE 365_FALL 2013

Please retain until end of the semester. Your participation grade relies on this document.

<table>
<thead>
<tr>
<th>WEEK</th>
<th>Participation Point CW & HW Assignments</th>
<th>Initialed for Completion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 8/23</td>
<td>Spiral activity</td>
<td>✓</td>
</tr>
<tr>
<td>2. 8/30</td>
<td>Snowman</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Cultural Artifact</td>
<td>✓</td>
</tr>
<tr>
<td>3. 9/6</td>
<td>Aims activities</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Lesson planning notes</td>
<td>✓</td>
</tr>
<tr>
<td>4. 9/13</td>
<td>Cultural/historical integration problem</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Dr. Davis activity</td>
<td>✓</td>
</tr>
<tr>
<td>5. 9/20</td>
<td>Chapter 5 WTL questions</td>
<td>✓</td>
</tr>
<tr>
<td>6. 9/27</td>
<td>Whole Numbers, Number Sense, & Operations with Whole Numbers</td>
<td>✓</td>
</tr>
<tr>
<td>7. 10/4</td>
<td>Mastering Basic Facts & Place Value Focus Questions</td>
<td>✓</td>
</tr>
<tr>
<td>8. 10/11</td>
<td>Strategies for Whole Number Operations & Computational Estimation JIGSAW: Part I notes</td>
<td>✓</td>
</tr>
<tr>
<td>9. 10/18</td>
<td>Case focus questions part of WTL #5</td>
<td>✓ No Initial Needed</td>
</tr>
<tr>
<td>10. 10/25</td>
<td>Designing a shape gallery activities</td>
<td>✓</td>
</tr>
<tr>
<td>11. 11/1</td>
<td>Literature connection HW* (30 min)</td>
<td>✓</td>
</tr>
<tr>
<td>12. 11/8</td>
<td>Geo & Measurement Centers assessment packet</td>
<td>✓</td>
</tr>
<tr>
<td>13. 11/15</td>
<td>Warm Up: Group Discussion of Praxis Example</td>
<td>✓</td>
</tr>
<tr>
<td>14. 11/22</td>
<td>Case questions part of WTL #8</td>
<td>✓ No Initial Needed</td>
</tr>
</tbody>
</table>

TOTAL POINTS from CW & HW /15

GENERAL PARTICIPATION in class is expected.
NOTE: ½ pt deduction from earned participation pts for every cell phone/non-class-related internet use