TIME & PLACE: Tu-Th 8:00-9:15-207 Johnson Center
 Tu-Th 10:50-12:05-207 Johnson Center

INSTRUCTOR: William R. Barfield, Ph.D., FACSM
 Professor

OFFICE HOURS: Tu-Th 9:20-10:45 AM

OFFICE: #213 Silcox Physical Education & Health Center

PHONE/FAX: (843) 953-6746 / (843) 953-6757

EMAIL: barfieldw@cofc.edu

PREREQUISITE: PEHD 201, BIOL 202, and or permission of instructor
You must have successfully completed these classes prior to enrolling in PEHD 330.

COURSE DESCRIPTION: Kinesiology will explore techniques of human motion
analysis. Particular emphasis is placed on the anatomical, mechanical, and physical principles of motion analysis.

STUDENT LEARNING OUTCOMES:

1. Students will understand the skeletal framework, movements, reference planes, definitions, biomechanical nomenclature and kinesiological history.
 a. bone and muscle microstructure
 b. linear, angular, and general planar motion (GPM)
 c. sagittal, transverse, and coronal planes
 d. kinematics and kinetics of motion
2. Students will learn about muscular function, roles and types:
 a. length-tension
 b. force-time relationships
 c. force-velocity relationships
3. Basic anatomy of upper and lower extremities, and how mechanics apply will be discussed and understood.
 a. shoulder joint
 b. elbow
 c. wrist and hand
 d. hip
 e. knee
 f. foot and ankle
4. Students will work collectively on a group project to assess research in their kinesiological area of interest for oral presentation to the class. Each group will provide the professor one typewritten NLM referenced paper.
5. Students will be able to qualitatively and theoretically quantitatively assess sport and other forms of movement following completion of this course.

REQUIREMENTS:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exams 3 @ 20%</td>
<td>60%</td>
</tr>
<tr>
<td>Pop-Tests</td>
<td>20%</td>
</tr>
<tr>
<td>Research Project</td>
<td>20%</td>
</tr>
</tbody>
</table>

DESCRIPTION OF PROJECTS:

1. In-class activities will include lecture/discussion, large and small group discussion, and written exams.
2. Out-of-class assignments will include readings study and project preparation.
3. Research Project Description (20%); Each student will participate in a class project with other classmates. There will be 3-5 people/project group. The objective of the project will be to provide students with an opportunity to present research findings on a movement or injury topic of choice pending Dr. Barfield’s approval. The groups will describe anatomically and kinesiologically what the movement/injury entails with correct, appropriate terminology, what the challenges are for success, and in increasing movement success.
Each team will be responsible for presenting their findings to the class and providing the professor one group copy. Grading will be based on professor and peer review of oral presentation and correctness, neatness and organization of the written portion. National Library of Medicine referencing should be used. Sample papers with appropriate referencing styles will be available on OAKS.

EXAMS:

Exam #1 (20%) will cover history of kinesiology, terminology, planes of motion, microstructure and gross structure of bone and muscle, muscle architecture, and joint classification.

Exam #2 (20%) will cover applied anatomy of the upper extremity, and the lower extremity.

Exam #3 (20%) will be the final exam and will cover linear and angular kinematics and linear kinetics. The exam will be comprehensive and will cover all information presented through group projects.

Pop-Tests (20%) will be announced and unannounced. If you miss the quiz your score will be zero. Make-ups are not available.

EVALUATION SCALE:

90-100% A
88-89% A-
85-87% B+
80-84% B
78-79% B-
75-77% C+
70-74% C
68-69% C-
66-67% D+
64-65% D
62-63% D-
<62 F

RESOURCE LIST:

St. Louis, Missouri: Mosby Year Book Inc.

ATTENDANCE POLICY:

1. All students will be allowed two (2) unexcused absences, except during major evaluations. Each UNEXCUSED ABSENCE in excess of 2 will result in 2% being deducted from your final average. Students who miss more than 5 classes will be dropped for excessive absences.
2. Class will begin and end in a timely manner. You are expected to be prepared when class begins. Persistent tardiness will not be tolerated and will result in loss of points and/or being dropped from the course. Two tardies will be the equivalent of one unexcused absence. You are tardy when one minute late for class.
3. You are responsible for any work missed when you fail to attend class.

CELL PHONE/PDA/LAPTOP COMPUTER POLICY:

The use of all PDA devices, including cell phones and laptop computers are expressly forbidden in the classroom. Texting, receiving or sending messages, cell phone use, or the use of laptop computers will result in immediate loss of points from your final class average and an absence will be recorded. If there is a 2nd violation of the class policy you will be awarded an F. The first violation will result in a 20 point deduction from your final class average. The 2nd violation is another 20 points, therefore making it impossible to successfully complete the class with a passing grade. Students must keep these devices turned off and out of sight during class. It is a violation of this policy to keep such devices on your lap.
MAKE-UP POLICY:
1. Make-up exams (excluding pop tests) will be given at the discretion of the professor when extenuating circumstances exist. It is the student's responsibility to see the instructor within three calendar class days to request a make-up exam time and date.
2. Assignments that are not turned in at the designated time will be accepted at the discretion of the professor. Be aware that unusual circumstances must exist for acceptance of late assignments, and if accepted, points will be deducted based on tardiness of the assignment.

ACADEMIC HONOR CODE:
Students will be expected to abide by the academic honor code found in the most current edition of the Student Handbook.

TENTATIVE COURSE OUTLINE:

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 10</td>
<td>Syllabus and Introduction to Kinesiology</td>
</tr>
<tr>
<td>January 15</td>
<td>Reference Planes and Nomenclature & History of Kinesiology</td>
</tr>
<tr>
<td>January 17</td>
<td>The Skeletal System microstructure</td>
</tr>
<tr>
<td>January 22</td>
<td>The Skeletal System bone types</td>
</tr>
<tr>
<td>January 24</td>
<td>The Skeletal System bone shapes</td>
</tr>
<tr>
<td></td>
<td>osteoporosis/osteopenia</td>
</tr>
<tr>
<td>January 29</td>
<td>The Skeletal System stress fractures</td>
</tr>
<tr>
<td></td>
<td>bone graft substitute types</td>
</tr>
<tr>
<td></td>
<td>research studies related to bone</td>
</tr>
<tr>
<td>January 31</td>
<td>The Neuromuscular System microstructure</td>
</tr>
<tr>
<td></td>
<td>muscle histology</td>
</tr>
<tr>
<td></td>
<td>behavioral characteristics</td>
</tr>
<tr>
<td>February 5</td>
<td>The Neuromuscular System</td>
</tr>
<tr>
<td>Date</td>
<td>Topic</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| February 7 | muscle architecture
 sliding filament theory and contractile proteins
 types of contractions
 force/velocity, force/time, force/length
 The Neuromuscular System
 elastic components and properties
 muscle fiber types
 roles muscles assume |
| February 12 | Skeletal Articulations
 types of articulations and characteristics
 range of motion and influence on movement
 articular fibrocartilage |
| February 14 | Review of Skeletal System
 Neuromuscular System and Articulations |
| February 19 | Review for Exam #1 |
| February 21 | Exam #1 |
| February 26 | Applied Anatomy of Upper Extremity
 shoulder articulations
 shoulder girdle ligaments
 muscular support
 impingement area
 scapular role
 Review Exam #1 |
| February 28 | Applied Anatomy of Upper Extremity
 rotator cuff
 elbow stability and muscular support |
| March 1 | Applied Anatomy of Upper Extremity
 movements at elbow
 extrinsic muscular movement in wrist and hand |
<p>| March 4-10 | Spring Break |</p>
<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 12</td>
<td>Applied Anatomy of Upper Extremity
intrinsic muscular movement in wrist and hand
carpal tunnel
wrist, hand, and finger skeletal and muscular support</td>
</tr>
<tr>
<td>March 14</td>
<td>Review Day of Upper Extremity
shoulder applied anatomy
elbow applied anatomy
wrist and hand applied anatomy</td>
</tr>
<tr>
<td>March 19</td>
<td>Applied Anatomy of Lower Extremity
pelvic girdle and skeletal development
pelvic muscular support
movements and constraints at hip
anatomically and mechanically</td>
</tr>
<tr>
<td>March 21</td>
<td>Applied Anatomy of Lower Extremity
angle of inclination and influence on movement
anteversion/retroversion
ligamentous and muscular support</td>
</tr>
<tr>
<td>March 26</td>
<td>Applied Anatomy of Lower Extremity
Estimation of joint reaction force at hip
Mechanics of the hip</td>
</tr>
<tr>
<td>March 28</td>
<td>Applied Anatomy of Lower Extremity
knee and ankle anatomy skeletally, muscularly and ligamentously</td>
</tr>
<tr>
<td>April 2</td>
<td>Review for Exam #2</td>
</tr>
<tr>
<td>April 4</td>
<td>Exam #2</td>
</tr>
<tr>
<td>April 9,11,16,18</td>
<td>Student Presentations</td>
</tr>
<tr>
<td>April 23</td>
<td>Last Class Day for Spring 2013 EXSC 330</td>
</tr>
<tr>
<td>April 30</td>
<td>Final Exam-10:50 Class
8:00-11:00 am</td>
</tr>
<tr>
<td>May 2</td>
<td>Final Exam-8:00 Class
8:00-11:00 am</td>
</tr>
</tbody>
</table>