TIME & PLACE:
Tu-Th 9:25-10:40 AM; Johnson 207
Johnson Physical Education & Health Center

INSTRUCTOR:
William R. Barfield, Ph.D., FACSM
Professor

OFFICE HOURS:
M-W-F 10:00-11:00 AM & Tu-Th 8:30-9:00

OFFICE:
#213 Silcox Physical Education & Health Center

PHONE/FAX:
843/953-6746 / 803/953-6757

PREREQUISITE:
Physics 101, Biology 202, & EXSC 330

GRADING:
A, B+, B, C+, C, D, F

COURSE DESCRIPTION:
This course will focus on the mechanical basis of human movement with some consideration given to the anatomical constraints that influence normal, athletic, and pathological movement. Topics covered will include linear and angular kinematics and kinetics of movement, equilibrium, and fluid mechanics.

COURSE TEXT:
Biomechanical Basis of Human Movement – Third Edition
Joseph Hamill & Kathleen M. Knutzen

STUDENT LEARNING OUTCOMES:

1. Students will comprehend a brief review of applied anatomy with particular reference to exercise and activity.
2. Students will recognize the value of solving human movement challenges from an athletic as well as from an injury and/or pathological perspective.
3. Units of measurement, differences in scalar and vector quantities and two-dimensional and three-dimensional methods of measurement will be comprehended.
4. Linear kinematic quantities will be described as they apply to movement of the body as well as projectiles.
5. Angular kinematics will be reproduced, especially as it applies to creation of GPM.
6. Newton's Laws of Motion with respect to linear and angular kinetics will be identified as they have application to an understanding of inverse dynamics.
7. Center of gravity, equilibrium and fluid mechanics will be explained.
8. Students will have a greater comprehension of various types of human motion and how these movements can be quantified.
9. Students will recognize technology and why it is important in the field of biomechanics.
REQUIREMENTS:
Written Exams- 2 @25% each 50%
Research Project 25%
Final Exam 25%
TOTAL 100%

DESCRIPTION OF PROJECTS:
1. In-class activities will include lecture/presentation, small group discussion, written examinations, and in-class research projects.
2. Out-of-class activities will include readings, study and project preparation.
3. Class Project Description (25%). Each student will be responsible for presenting an in-class group project concerning how one of the mechanical constructs we examine during the semester influences normal, athletic, or pathological movement. The presentation should be planned for 30 minutes with 5 minutes at the end for questions and/or comment. A referenced, written paper will be turned in the day of presentation.

EXAMS:
Exam #1 (25%) will cover linear and angular kinematic quantities and how they relate to movement.

Exam #2 (25%) will cover linear and angular kinetic quantities, and equilibrium and how they relate to movement.

Final Exam (25%) will be comprehensive and will cover all information presented throughout the course including student projects.

EVALUATION SCALE:
90-100 A
88-89 A-
85-87 B+
80-84 B
78-79 B-
75-77 C+
70-74 C
68-69 C-
66-67 D+
64-65 D
62-63 D-
<62 F

ATTENDANCE POLICY:
1. Students will be allowed two (2) unexcused absences, except during major evaluations. EACH UNEXCUSED ABSENCES in excess of two (2) will result in 2% being deducted from your final average. Students who miss more than 5 classes for ANY REASON will be dropped from the course (WA).
2. Class will begin and end in a timely manner. You are expected to be prepared when class begins. Persistent tardiness will not be tolerated and may result in loss of points.
3. You are responsible for any work missed when you fail to attend class.
4. Two tardies will be the equivalent of one excused absence. Tardy means you are 1 minute late + for the start of class.

MAKE-UP POLICY:
1. Make-up exams will be given at the discretion of the professor when extenuating circumstances exist. It is the student’s responsibility to see the professor within three calendar days to request a make-up exam time and date.
2. Assignments that are not turned in at the designated time will be accepted at the discretion of the professor. Be aware that unusual circumstances must exist for acceptance of late assignments.

CELL PHONE/PDA POLICY:
The use of all PDA devices, including cell phones and laptop computers are expressly forbidden in the classroom. Texting, receiving or sending messages, cell phone use, or the use of laptop computers will result in immediate loss of points from your final class average and an absence will be recorded. If there is a 2nd violation of the class policy you will be awarded an F. The first violation will result in a 20 point deduction from your final class average. The 2nd violation is another 20 points, therefore making it impossible to successfully complete the class with a passing grade. Students must keep these devices turned off and out of sight during class. It is a violation of this policy to keep such devices on your lap, in your pocket or on the floor by your desk. Any suspicion of your use on my part will result in loss of points.

ACADEMIC HONOR CODE:
Students will be expected to abide by the academic honor code found in the most current edition of the Student Handbook.

PROJECTED COURSE OUTLINE:
August 25 Introduction to Biomechanics
August 27 Biomechanics of Movement & Sport
September 1 Biomechanics of Movement & Sport
September 3 Review of Linear Kinematics
 vectors, resultants
September 8 Review of Linear Kinematics
 instantaneous velocity and acceleration
 kinematics of gait
 projectile motion
September 10 Linear Kinematics Review
September 15 Linear Kinematics Final Review
September 17 Introduction to Angular Kinematics
 axes of rotation and units of measurement
 angular motion and types of angles
<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 22</td>
<td>Angular Kinematics</td>
</tr>
<tr>
<td></td>
<td>relationship between linear and angular kinematics</td>
</tr>
<tr>
<td>September 24</td>
<td>Angular Kinematics</td>
</tr>
<tr>
<td></td>
<td>angular kinematics of running</td>
</tr>
<tr>
<td>September 29</td>
<td>Angular Kinematics Review</td>
</tr>
<tr>
<td></td>
<td>Update #1 on Biomechanics Project Due</td>
</tr>
<tr>
<td>October 1</td>
<td>Guest Lecture on Biomechanics Applications</td>
</tr>
<tr>
<td></td>
<td>Learning Activities: lecture, class discussion, in class problems and graphing.</td>
</tr>
<tr>
<td>October 6</td>
<td>Review Day for Exam #1</td>
</tr>
<tr>
<td>October 8</td>
<td>Exam #1</td>
</tr>
<tr>
<td>October 13</td>
<td>Linear Kinetics</td>
</tr>
<tr>
<td></td>
<td>ground reaction forces</td>
</tr>
<tr>
<td></td>
<td>other contact forces</td>
</tr>
<tr>
<td>October 15</td>
<td>Laws of Motion</td>
</tr>
<tr>
<td>October 22</td>
<td>Free-Body Diagrams</td>
</tr>
<tr>
<td>October 27</td>
<td>Special Force Applications</td>
</tr>
<tr>
<td></td>
<td>pressure, mechanical work, energy, and power</td>
</tr>
<tr>
<td>October 29</td>
<td>Linear Kinetics Review and Summary</td>
</tr>
<tr>
<td>November 3</td>
<td>Introduction to Angular Kinetics</td>
</tr>
<tr>
<td></td>
<td>center of gravity and center of mass</td>
</tr>
<tr>
<td>November 5</td>
<td>Rotation and Leverage</td>
</tr>
<tr>
<td></td>
<td>lever classifications</td>
</tr>
<tr>
<td></td>
<td>moment of inertia</td>
</tr>
<tr>
<td></td>
<td>Learning Activities: lecture, class discussion, in-class problem solving and article review.</td>
</tr>
<tr>
<td>November 10</td>
<td>Angular Momentum</td>
</tr>
<tr>
<td></td>
<td>Update #2 on Biomechanics Project Due</td>
</tr>
<tr>
<td>November 12</td>
<td>Angular Analogs to Newton’s Laws of Motion and Review for Quiz #2</td>
</tr>
<tr>
<td>November 17</td>
<td>Quiz #2</td>
</tr>
</tbody>
</table>
November 19, 24, December 1 In-Class Presentations

December 3 Last Class Day for Fall 2015

December 12 Comprehensive Final Exam
8:00-11:00 am